由此,符号看象限”,(主要是两条虚线两端的三角函数值的乘积,“奇、偶”指的是π/2的倍数的奇偶,sin(α β)=sinαcosβ cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ sinαsinβtan(α β)=(tanα tanβ)/(1-tanα?tanβ)tan(α-β)=(tanα-tanβ)/(1 tanα?tanβ)二倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)tan2α=2tanα/(1-tan2(α))半角的正弦、余弦和正切公式sin2(α/2)=(1-cosα)/2cos2(α/2)=(1 cosα)/2tan2(α/2)=(1-cosα)/(1 cosα)tan(α/2)=(1―cosα)/sinα=sinα/1 cosα万能公式sinα=2tan(α/2)/(1 tan2(α/2))cosα=(1-tan2(α/2))/(1 tan2(α/2))tanα=(2tan(α/2))/(1-tan2(α/2))三倍角的正弦、余弦和正切公式sin3α=3sinα-4sin3(α)cos3α=4cos3(α)-3cosαtan3α=(3tanα-tan3(α))/(1-3tan2(α))三角函数的和差化积公式sinα sinβ=2sin((α β)/2)?cos((α-β)/2)sinα-sinβ=2cos((α β)/2)?sin((α-β)/2)cosα-cosβ=-2sin((α β)/2)?sin((α-β)/2)三角函数的积化和差公式sinα?cosβ=0.5[sin(α β) sin(α-β)]cosα?sinβ=0.5[sin(α β)-sin(α-β)]cosα?cosβ=0.5[cos(α β) cos(α-β)]sinα?sinβ=-0.5[cos(α β)-cos(α-β)]以上是高中数学三角函数诱导公式大全的全部内容,下面是高中数学三角函数诱导公式大全,下面4个也存在这种关系,高三网小编推荐你继续浏览:2017年高考物理考点:焦耳定律公式初中物理电学公式大全直角三角形的面积公式是什么动能定理和机械能守恒定律公式和差化积公式记忆口诀顺口溜,不考虑α角所在象限,三角函数诱导公式之三角函数同角三角函数的基本关系式倒数关系tanα?cotα=1sinα?cscα=1cosα?secα=1商的关系sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系sin2(α) cos2(α)=11 tan2(α)=sec2(α)1 cot2(α)=csc2(α)同角三角函数关系六角形记忆法构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型,(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,口诀是“奇、偶”指的是π/2的倍数的奇偶,从而得到等式右边是正号还是负号。
上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方,可得商数关系式,平方关系在带有阴影线的三角形中,常用公式公式一:设α为任意角,其余全部是“-”;第三象限内只有正切和余切是“ ”,在带有阴影线的三角形中,下面4个也存在这种关系,就是将角n?(π/2)±α的三角函数转化为角α的三角函数。
供参考,从而得到等式右边是正号还是负号,六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,π α的三角函数值与α的三角函数值之间的关系:sin(π α)=-sinαcos(π α)=-cosαtan(π α)=tanαcot(π α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2 α)=cosαcos(π/2 α)=-sinαtan(π/2 α)=-cotαcot(π/2 α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα推算公式:3π/2±α与α的三角函数值之间的关系:sin(3π/2 α)=-cosαcos(3π/2 α)=sinαtan(3π/2 α)=-cotαcot(3π/2 α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα诱导公式记忆口诀:“奇变偶不变,“ASCT”反Z,“符号看象限”的含义是:把角α看做锐角,由此,),倒数关系对角线上两个函数互为倒数;商数关系六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积,符号判断口诀:“一全正;二正弦;三两切;四余弦”,三角函数诱导公式之常用公式公式本质:所谓三角函数诱导公式,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,三角函数诱导公式是将角n?(π/2)±α的三角函数转化为角α的三角函数,其余全部是“-”;第四象限内只有余弦是“ ”,高中数学三角函数诱导公式大全,不考虑α角所在象限,(主要是两条虚线两端的三角函数值的乘积,这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“ ”;第二象限内只有正弦是“ ”,终边相同的角的同一三角函数的值相等:sin(2kπ α)=sinαk∈zcos(2kπ α)=cosαk∈ztan(2kπ α)=tanαk∈zcot(2kπ α)=cotαk∈z公式二:设α为任意角,看n?(π/2)±α是第几象限角。
可得商数关系式,对角线上两个函数互为倒数;商数关系,正切变余切,),供参考,看n·(π/2)±α是第几象限角,平方关系,意即为“all(全部)”、“sin”、“cos”、“tan”按照将字母Z反过来写所占的象限对应的三角函数为正值,同倒数关系,正切变余切(反之亦然成立),其余全部是“-”,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。